Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Discov Oncol ; 14(1): 223, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38051394

RESUMO

Breast cancer is the most common cancer worldwide, with an estimated 2.3 million new cases diagnosed every year. Effective measures for cancer prevention and cancer therapy require a detailed understanding of the individual key disease mechanisms involved and their interactions at the molecular, cellular, tissue, organ, and organism level. In that regard, the rapid progress of biomedical and toxicological research in recent years now allows the pursuit of new approaches based on non-animal methods that provide greater mechanistic insight than traditional animal models and therefore facilitate the development of Adverse Outcome Pathways (AOPs) for human diseases. We performed a systematic review of the current state of published knowledge with regard to breast cancer to identify relevant key mechanisms for inclusion into breast cancer AOPs, i.e. decreased cell stiffness and decreased cell adhesion, and to concurrently map non-animal methods addressing these key events. We conclude that the broader sharing of expertise and methods between biomedical research and toxicology enabled by the AOP knowledge management framework can help to coordinate global research efforts and accelerate the transition to advanced non-animal methods, which, when combined into powerful method batteries, closely mimic human physiology and disease states without the need for animal testing.

2.
Methods Mol Biol ; 2488: 207-226, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35347691

RESUMO

Cell images provide a multitude of phenotypic information, which in its entirety the human eye can hardly perceive. Automated image analysis and machine learning approaches enable the unbiased identification and analysis of cellular mechanisms and associated pathological effects. This protocol describes a customized image analysis pipeline that detects and quantifies changes in the localization of E-Cadherin and the morphology of adherens junctions using image-based measurements generated by CellProfiler and the machine learning functionality of CellProfiler Analyst.


Assuntos
Aprendizado de Máquina , Software , Processamento de Imagem Assistida por Computador/métodos , Fenótipo
3.
Environ Int ; 158: 106947, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717173

RESUMO

BACKGROUND: Exposure to environmental chemicals that interfere with normal estrogen function can lead to adverse health effects, including cancer. High-throughput screening (HTS) approaches facilitate the efficient identification and characterization of such substances. OBJECTIVES: We recently described the development of the E-Morph Assay, which measures changes at adherens junctions as a clinically-relevant phenotypic readout for estrogen receptor (ER) alpha signaling activity. Here, we describe its further development and application for automated robotic HTS. METHODS: Using the advanced E-Morph Screening Assay, we screened a substance library comprising 430 toxicologically-relevant industrial chemicals, biocides, and plant protection products to identify novel substances with estrogenic activities. Based on the primary screening data and the publicly available ToxCast dataset, we performed an insilico similarity search to identify further substances with potential estrogenic activity for follow-up hit expansion screening, and built seven insilico ER models using the conformal prediction (CP) framework to evaluate the HTS results. RESULTS: The primary and hit confirmation screens identified 27 'known' estrogenic substances with potencies correlating very well with the published ToxCast ER Agonist Score (r=+0.95). We additionally detected potential 'novel' estrogenic activities for 10 primary hit substances and for another nine out of 20 structurally similar substances from insilico predictions and follow-up hit expansion screening. The concordance of the E-Morph Screening Assay with the ToxCast ER reference data and the generated CP ER models was 71% and 73%, respectively, with a high predictivity for ER active substances of up to 87%, which is particularly important for regulatory purposes. DISCUSSION: These data provide a proof-of-concept for the combination of in vitro HTS approaches with insilico methods (similarity search, CP models) for efficient analysis of large substance libraries in order to prioritize substances with potential estrogenic activity for subsequent testing against higher tier human endpoints.


Assuntos
Disruptores Endócrinos , Bioensaio , Estrogênios/toxicidade , Estrona , Ensaios de Triagem em Larga Escala , Humanos
4.
Environ Int ; 149: 106411, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33549916

RESUMO

Adverse health effects that are caused by endocrine disrupting chemicals (EDCs) in the environment, food or consumer products are of high public concern. The identification and characterization of EDCs including substances with estrogenic activity still necessitates the use of animal testing as most of the approved alternative test methods only address single mechanistic events of endocrine activity. Therefore, novel human-relevant in vitro assays covering more complex functional endpoints of adversity, including hormone-related tumor formation and progression, are needed. This study describes the development and evaluation of a novel high-throughput screening-compatible assay called "E-Morph Assay". This image-based phenotypic screening assay facilitates robust predictions of the estrogenic potential of environmental chemicals using quantitative changes in the cell-cell contact morphology of human breast cancer cells as a novel functional endpoint. Based on a classification model, which was developed using six reference substances with known estrogenic activity, the E-Morph Assay correctly classified an additional set of 11 reference chemicals commonly used in OECD Test Guidelines and the U.S. EPA ToxCast program. For each of the tested substances, a relative ER bioactivity score was derived that allowed their grouping into four main categories of estrogenic activity, i.e. 'strong' (>0.9; four substances, i.e. natural hormones or pharmaceutical products), 'moderate' (0.9-0.6; six substances, i.e. phytoestrogens and Bisphenol AF), 'weak' (<0.6; three substances, i.e Bisphenol S, B, and A), and 'negative' (0.0; four substances). The E-Morph Assay considerably expands the portfolio of test methods providing the possibility to characterize the influence of environmental chemicals on estrogen-dependent tumor progression.


Assuntos
Neoplasias da Mama , Disruptores Endócrinos , Animais , Bioensaio , Disruptores Endócrinos/toxicidade , Estrogênios/toxicidade , Estrona , Humanos
5.
iScience ; 23(11): 101683, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33163938

RESUMO

Estrogens play an important role in the development and progression of human cancers, particularly in breast cancer. Breast cancer progression depends on the malignant destabilization of adherens junctions (AJs) and disruption of tissue integrity. We found that estrogen receptor alpha (ERα) inhibition led to a striking spatial reorganization of AJs and microclustering of E-Cadherin (E-Cad) in the cell membrane of breast cancer cells. This resulted in increased stability of AJs and cell stiffness and a reduction of cell motility. These effects were actomyosin-dependent and reversible by estrogens. Detailed investigations showed that the ERα target gene and epidermal growth factor receptor (EGFR) ligand Amphiregulin (AREG) essentially regulates AJ reorganization and E-Cad microclustering. Our results not only describe a biological mechanism for the organization of AJs and the modulation of mechanical properties of cells but also provide a new perspective on how estrogens and anti-estrogens might influence the formation of breast tumors.

6.
Genetics ; 211(1): 15-34, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30626639

RESUMO

The development of fluorescent labels and powerful imaging technologies in the last two decades has revolutionized the field of fluorescence microscopy, which is now widely used in diverse scientific fields from biology to biomedical and materials science. Fluorescence microscopy has also become a standard technique in research laboratories working on Drosophila melanogaster as a model organism. Here, we review the principles of fluorescence microscopy technologies from wide-field to Super-resolution microscopy and its application in the Drosophila research field.


Assuntos
Drosophila melanogaster/citologia , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Microscopia de Fluorescência/normas
7.
PLoS Genet ; 14(1): e1007171, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29320510

RESUMO

Adipose tissue lipolysis occurs during the development of heart failure as a consequence of chronic adrenergic stimulation. However, the impact of enhanced adipose triacylglycerol hydrolysis mediated by adipose triglyceride lipase (ATGL) on cardiac function is unclear. To investigate the role of adipose tissue lipolysis during heart failure, we generated mice with tissue-specific deletion of ATGL (atATGL-KO). atATGL-KO mice were subjected to transverse aortic constriction (TAC) to induce pressure-mediated cardiac failure. The cardiac mouse lipidome and the human plasma lipidome from healthy controls (n = 10) and patients with systolic heart failure (HFrEF, n = 13) were analyzed by MS-based shotgun lipidomics. TAC-induced increases in left ventricular mass (LVM) and diastolic LV inner diameter were significantly attenuated in atATGL-KO mice compared to wild type (wt) -mice. More importantly, atATGL-KO mice were protected against TAC-induced systolic LV failure. Perturbation of lipolysis in the adipose tissue of atATGL-KO mice resulted in the prevention of the major cardiac lipidome changes observed after TAC in wt-mice. Profound changes occurred in the lipid class of phosphatidylethanolamines (PE) in which multiple PE-species were markedly induced in failing wt-hearts, which was attenuated in atATGL-KO hearts. Moreover, selected heart failure-induced PE species in mouse hearts were also induced in plasma samples from patients with chronic heart failure. TAC-induced cardiac PE induction resulted in decreased PC/ PE-species ratios associated with increased apoptotic marker expression in failing wt-hearts, a process absent in atATGL-KO hearts. Perturbation of adipose tissue lipolysis by ATGL-deficiency ameliorated pressure-induced heart failure and the potentially deleterious cardiac lipidome changes that accompany this pathological process, namely the induction of specific PE species. Non-cardiac ATGL-mediated modulation of the cardiac lipidome may play an important role in the pathogenesis of chronic heart failure.


Assuntos
Tecido Adiposo/metabolismo , Insuficiência Cardíaca/etiologia , Hipertensão/complicações , Lipase/fisiologia , Metabolismo dos Lipídeos/genética , Miocárdio/metabolismo , Disfunção Ventricular Esquerda/etiologia , Animais , Estudos de Casos e Controles , Células Cultivadas , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Lipase/genética , Lipase/metabolismo , Masculino , Metaboloma/genética , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/metabolismo , Remodelação Ventricular
8.
Dev Cell ; 33(3): 351-65, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25942626

RESUMO

Membrane trafficking is key to the cell biological mechanisms underlying development. Rab GTPases control specific membrane compartments, from core secretory and endocytic machinery to less-well-understood compartments. We tagged all 27 Drosophila Rabs with YFP(MYC) at their endogenous chromosomal loci, determined their expression and subcellular localization in six tissues comprising 23 cell types, and provide this data in an annotated, searchable image database. We demonstrate the utility of these lines for controlled knockdown and show that similar subcellular localization can predict redundant functions. We exploit this comprehensive resource to ask whether a common Rab compartment architecture underlies epithelial polarity. Strikingly, no single arrangement of Rabs characterizes the five epithelia we examine. Rather, epithelia flexibly polarize Rab distribution, producing membrane trafficking architectures that are tissue- and stage-specific. Thus, the core machinery responsible for epithelial polarization is unlikely to rely on polarized positioning of specific Rab compartments.


Assuntos
Membrana Celular/metabolismo , Movimento Celular/fisiologia , Drosophila melanogaster/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Epitélio/metabolismo , Técnicas de Silenciamento de Genes/métodos , Transporte Proteico/genética , Proteínas rab de Ligação ao GTP/genética
9.
PLoS One ; 9(12): e114340, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25473846

RESUMO

The formation of straight compartment boundaries separating groups of cells with distinct fates and functions is an evolutionarily conserved strategy during animal development. The physical mechanisms that shape compartment boundaries have recently been further elucidated, however, the molecular mechanisms that underlie compartment boundary formation and maintenance remain poorly understood. Here, we report on the outcome of an RNA interference screen aimed at identifying novel genes involved in maintaining the straight shape of the anteroposterior compartment boundary in Drosophila wing imaginal discs. Out of screening 3114 transgenic RNA interference lines targeting a total of 2863 genes, we identified a single novel candidate that interfered with the formation of a straight anteroposterior compartment boundary. Interestingly, the targeted gene encodes for the Eph receptor tyrosine kinase, an evolutionarily conserved family of signal transducers that has previously been shown to be important for maintaining straight compartment boundaries in vertebrate embryos. Our results identify a hitherto unknown role of the Eph receptor tyrosine kinase in Drosophila and suggest that Eph receptors have important functions in shaping compartment boundaries in both vertebrate and insect development.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Receptor EphA1/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/embriologia , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Técnicas de Silenciamento de Genes , Discos Imaginais/anatomia & histologia , Discos Imaginais/embriologia , Discos Imaginais/metabolismo , Interferência de RNA , Receptor EphA1/metabolismo
10.
Elife ; 32014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25275323

RESUMO

The Insulin signaling pathway couples growth, development and lifespan to nutritional conditions. Here, we demonstrate a function for the Drosophila lipoprotein LTP in conveying information about dietary lipid composition to the brain to regulate Insulin signaling. When yeast lipids are present in the diet, free calcium levels rise in Blood Brain Barrier glial cells. This induces transport of LTP across the Blood Brain Barrier by two LDL receptor-related proteins: LRP1 and Megalin. LTP accumulates on specific neurons that connect to cells that produce Insulin-like peptides, and induces their release into the circulation. This increases systemic Insulin signaling and the rate of larval development on yeast-containing food compared with a plant-based food of similar nutritional content.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Insetos/metabolismo , Insulina/metabolismo , Lipoproteínas/metabolismo , Neurônios/metabolismo , Animais , Transporte Biológico , Encéfalo/crescimento & desenvolvimento , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Expressão Gênica , Proteínas de Insetos/genética , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Lipídeos/química , Lipoproteínas/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Saccharomyces cerevisiae/química , Transdução de Sinais
11.
ACS Appl Mater Interfaces ; 6(10): 7633-42, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24724990

RESUMO

In this paper, we investigate conjugated polymer layers structured by nanoimprint lithography toward their suitability for the fabrication of nanostructured polymer/metal sulfide hybrid solar cells. Consequently, we first study the thermal stability of the nanoimprinted conjugated polymer layers by means of scanning electron microscopy and grazing incidence small-angle X-ray scattering, which reveals a reasonable thermal stability up to 145 °C and sufficient robustness against the solvent mixture used in the subsequent fabrication process. In the second part, we demonstrate the preparation of nanostructured polymer/copper indium sulfide hybrid solar cells via the infiltration and thermal decomposition of a mixture of copper and indium xanthates. Although this step needs temperatures of more than 160 °C, the nanostructures are retained in the final polymer/copper indium sulfide layers. The nanostructured solar cells show significantly improved power conversion efficiencies compared to similarly prepared flat bilayer devices, which is based on a distinct improvement of the short circuit current in the nanostructured solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...